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What con�guration of N point charges on a conducting sphere minimizes the Coulombic energy?

J. J. Thomson posed this question in 1904. For N � 112, numerical methods have found apparent

global minimum energy con�gurations; but the number of local minima appears to grow exponen-

tially with N , making many such methods impractical. Here we describe a topological/numerical

procedure that we believe gives the global energy minimum lattice con�guration for N of the form

N = 10(m2 + n2 +mn) + 2 (m, n positive integers). For those N with more than one lattice, we

give a rule to choose the minimum one.

Given N unit point charges on the surface of a unit conducting sphere, what is the con�guration of the charges

for which the Coulombic energy
P

N

i;j=1;j>i
1=jri � rj j is minimized? This question was originally asked by J.J.

Thomson long ago [1] and has since been investigated by many authors [2{12]. Besides its interest as a physics and

mathematical optimization problem, the question posed by Thomson is similar to problems in other �elds such as the

arrangement of the protein subunits of a protein coat of a spherical virus [13{15], and the arrangement of atoms in a

spherical molecule [16]. Somewhat surprisingly, it turns out that the con�guration of minimum energy for Thomson's

problem is not the con�guration which places the charges at furthest distance from each other, or the con�guration of

greatest symmetry. For example, for eight charges, the con�guration of minimum energy is not a cube, but a twisted

noncubic rectangular parallelepiped [5]. For 2 � N � 100 by means of extensive trials utilizing a number of methods

it appears that the minimum energy con�gurations may have been found [1{12]. However, as the number of closely

spaced local minima seems to grow tremendously with N [11], for an arbitrary large N it may be extremely di�cult

to �nd the global minimum con�guration. Generalizing from topological properties of the apparent local minimum

energy con�gurations for N � 100 , we have noted a topological/numerical procedure described here to generate

\lattice" con�gurations which we think are global minima for Thomson's problem for numbers of charges of the form

N = 10(m2 + n2 +mn) + 2 with m and n positive integers.

We can consider the charges on the sphere as vertices of a convex polytope. It had been noted that for 12 � N � 60,

N = 72, N = 78, N = 100 the minimum energy con�guration usually has 12 vertices with �ve nearest neighbors

(pentamers) and N � 12 vertices with six nearest neighbors (hexamers) [7,9, and refs. therein]. We have con�rmed

this for the other 61 � N � 100 (Table I, refs. [7], [9] and refs. therein). This observation can be appreciated from a

topological point of view with reference to Euler's formula relating faces (F ), vertices (V ), and edges (E) of a convex

polytope (F + V = E + 2). Indeed, if all the faces of our polytope are triangles and we consider the polytope to

consist only of tetramers (vertices with four nearest neighbors) (V4) , pentamers (V5) , hexamers (V6) , and heptamers

(vertices with seven nearest neighbors) (V7), then

V5 + 2V4 � V7 = 12 ; (1)

with all the rest of the vertices being hexamers [17]. From Table I we see that in general the apparent minimum

energy con�guration has exactly 12 pentamers and N � 12 hexamers. Many of the exceptions occur for numbers of

charges such as 33, 70, 71 and 73 which are very close to N = 32, and N = 72 which have extremely stable supposed

global minimum con�gurations (see below).

For

N = 10(m2 + n2 +mn) + 2 (2)

with m and n positive integers and m � n, a particularly symmetric icosahedral lattice con�guration can be formed

with exactly 12 pentamers (and no tetramers or heptamers) with the vertices of the pentamers at the vertices of an
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icosahedron (Fig. 1). The procedure for generating the lattice is given in detail in the Fig. 1. In outline: We �rst put

points on an icosahedron, then we project these points radially onto a sphere, then a conjugate gradient minimization

routine [18] is used to obtain the �nal positions of the charges. For N = 32 (m = 1, n = 1) and N = 72 (m = 2,

n = 1) this procedure generates the previously known apparent minimum energy con�gurations. The next lattice

numbers are N = 122 (m = 2, n = 2) and N = 132 (m = 3, n = 1). It has been noted that for 70 � N � 112 the

number of local minima increases as 0:382 exp(0:0497N) [11]. In accordance with this we used a conjugate gradient

[18] starting from 200 and 300 random con�gurations for N = 122 and 132 respectively, and did not �nd an energy

lower than the lattice energy for either value of N . We also ran from some con�gurations slightly perturbed from

the lattice loading. Without an analytical proof we cannot be sure that the lattice con�gurations are the ones of

minimum energy for N = 122 and N = 132. We believe that the lattice con�gurations are the ones of minimum

energy for N = f122; 132g, and in general we believe that the lattice con�gurations are the ones of minimum energy

for N of the form of equation (2). (However, if the ratio of m to n is too large, then the lattice con�guration may

not be the one of minimum energy. See below.) For potential energies of the form f1=r�j� = 2; 3g (where r is the

Euclidean distance between charges) we have found that lattice con�gurations also appear to be the minimum energy

con�gurations, with the exact location of the charges depending on the potential (E. L. A. et al. unpublished data).

For N � 312, a number of groups using various methods have also found icosahedral lattices to be minimum{energy

con�gurations [6,7,9,19{22].

The question arises as to the con�guration of minimum energy for those N which can be obtained by substituting

more than one pair of m and n into equation (2). For example, for N = 912, two icosahedral lattice con�gurations

can be constructed: one with m = 6 and n = 5, and another with m = 9 and n = 1. Now, for N = 42 and N = 92

which would correspond to (m = 2, n = 0) and (m = 3, n = 0), respectively, in equation (2) it is known that the

minimum energy con�guration is not the lattice con�guration. We have shown that for N = 162 (m = 4, n = 0)

the lattice con�guration is also not the minimum energy con�guration (E.L.A. et al. unpublished data, [19{21]). In

general we think that for N = 10m2 + 2 (except for the very special case of N = 12, (m = 1; n = 0)) the lattice

con�guration is not the minimum energy con�guration. From the result that the cases of equation (2) with n = 0

appear not to be global minima, we hypothesized that for those N that can be obtained by substituting more than

one pair of m and n into equation 2, the lattice con�guration with a smaller ratio of m to n has lower energy than

the con�guration with a larger ratio, which might more closely resemble a con�guration with n = 0 (m=n = 1).

(Table II, Fig, 2). For example, for N = 912 the lattice con�guration with m = 6, n = 5 has a lower energy than the

lattice con�guration with m = 9, n = 1 (Fig. 2). As well, we have veri�ed this hypothesis for the other four examples

of such N which are less than 2500 (Table II). A smaller ratio of m to n may lower the energy by permitting more

twisting of the high energy pentamers with respect to each other than for a larger ratio of m to n. Given that N of

the form of equation (2) with n = 0 the lattice con�gurations are not local minima, it may be that for a su�ciently

large ratio of m to n the lattice con�guration is not the global energy minimum con�guration. (Icosahedral lattice

con�gurations have been discussed in relation to the Tammes problem|maximization the minimum distance between

N points on the surface of a unit sphere [24]. However, it has been shown that in many cases including N = 72

an icosahedral lattice and other con�gurations of high symmetry are not necessarily the best ones for the Tammes

problem [25,26].) We note that the trend toward smaller energy spacing between the pairs of states in Table II is

consistent with the bunching of local minima closer to the global minimum described in Ref. [22]. Our values of the

energy for N = 122; 132; : : : ; 912; : : : agree well with empirical formulas [8,19] for the energy of the minimum energy

con�guration for a given N . Though, not surprisingly, the energies of the lattice con�gurations are somewhat lower

than predicted as the lattices are such good con�gurations.

(Using algebraic number theory [23] it can be shown that those N for which more than one icosahedral lattice can

be constructed are of the form N = 10k23jpm1

1 pm2

2 : : : pmn
n

+ 2 where k is an integer greater > 0 with no prime factors

� 1 mod 6; j is an integer � 0; p1; : : : ; pn are distinct prime numbers � 1 mod 6; m1; : : : ;mn are integers � 0; and

at least one of n or m1 is � 2. The number of icosahedral lattices which can be constructed for such an N is equal to

0:5(m1 + 1)(m2 + 1) : : : (mn + 1), rounding up if this expression is not an integer. For example; for N = 912, k = 1,

j = 0, n = 2, p1 = 7, m1 = 1, p2 = 13, m2 = 1, and the number of icosahedral lattices is two.)

As mentioned, many examples of apparent minimum energy con�gurations which do not have exactly 12

pentamers|N = f33; 70; 71; 73g|have numbers of charges close to the apparent lattice global energy minimum

con�gurations for N = 32 and N = 72. This may result because the lattice con�gurations are so symmetric that it

be di�cult to add or subtract one or two charges and still have a good minimum with exactly 12 pentamers. (For

N = 13 there exists no con�guration of charges with 12 pentamers and 1 hexamer [27].)

There may be other families of solutions besides the icosahedral lattices. For example, the apparent minimum energy

con�guration for N = 78 has a T4 (tetrahedral) symmetry [9]. We have constructed an analog of this T4 solution for

N = 78 with N = 306 (E.L.A. et al. unpublished data) which we suspect is the minimum energy con�guration for
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N = 306; however, the number of random trials necessary to get con�dence that this T4 con�guration for N = 306

is the global minimum seems prohibitive. Perhaps, similar to N = f33; 70; 71; 73g, the reason that the apparent

global minimum con�guration for N = 79 does not have exactly 12 pentamers may be because it is di�cult to add

one charge to the very symmetric T4 con�guration for N = 78 and still obtain a good minimum with exactly 12

pentamers. Recently, very good low energy con�gurations have been found for N = f137; 146g [19].

For N = 10(m2 + n2 +mn) + 2 with m, n positive integers we have given a method for generating con�gurations

which we think are global minima for Thomson's problem, and tested these con�gurations extensively for N = 122

and 132. We have hypothesized that in cases in which more than one pair of m and n give a lattice con�guration

with the same N the con�guration with the smaller ratio of m to n have a lower energy and veri�ed this hypothesis

for the �ve such N < 2500. Given that for n = 0 the icosahedral lattices are not the minimum energy con�gurations,

there is an interesting open question as to whether the lattices remain minimum{energy con�gurations as the ratio

of m to n grows large. The topological patterns and symmetries manifest in the lattice con�gurations for Thomson's

problem also appear in a diverse array of other physical and biological systems [13{16]. These con�gurations may be

useful for benchmarking optimization methods.
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TABLE I. Most apparent minimum energy con�gurations for 12 � N � 100 have 12 pentamers and N � 12 hexamers.

Exceptions are given in the table. N is the number of charges. If the polytope contains Q quadrilateral faces, V5 pentamers,

V4 tetramers, and V7 heptamers, then it can be shown that V5 + 2V4 � V7 � 2Q = 12 with all the rest of the vertices being

hexamers. To decide if two vertices, v and w, are nearest neighbors we look at the triangles with vertices v, w, and x, where

x ranges over all other vertices. If the angle at the vertex x is 90 degrees or more (for any x) then v and w are not nearest

neighbors. We join vertices determined to be nearest neighbors by an edge. The resulting polytopes have mainly triangular

faces with an occasional quadrilateral face. (Especially for polytopes with quadrilateral faces, there can be some ambiguity in

assignment of nearest neighbors. Another method for doing so with less ambiguity is given in Ref. [22].)

N Pentamers Hexamers Heptamers Tetramers Quadrilateral Faces

13 10 2 1

18 8 8 2

21 10 10 1

33 15 17 1 1

53 16 37 2

59 14 43 2

70 20 50 4

71 16 55 2

73 16 57 2

79 15 63 1 1

83 14 67 2
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TABLE II. For N < 2500 when two lattice con�gurations have the same number of charges , the con�guration with a smaller

ratio of m to n has a lower energy. For construction of the lattices see Fig. 1.

N m n Energy

912 6 5 400 660.1320

9 1 400 662.3832

1332 9 4 860 260.5582

11 1 860 264.5477

1472 7 7 1 052 197.474

11 2 1 052 200.022

2172 9 8 2 302 877.842

13 3 2 302 880.777

2472 11 7 2 987 501.183

14 3 2 987 505.566
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(a) (a)

No. Charges =  132          E = 7875.04534
5.978e+01

5.963e+01

(b) (b)

No. Charges = 1032          E = 514201.965
4.990e+02

4.981e+02

FIG. 1. Lattice con�gurations for 132 (a) and 1032 (b) charges. To go from one vertex of a pentamer to another vertex of

a pentamer for 132 charges (a) one goes up three edges and over one edge, while for 1032 charges one goes up nine edges and

over two edges. Vertices of hexamers are indicated by a small black circle, vertices of pentamers by a small red circles, and

edges by black lines. The other points on the sphere are colored as follows: The potential energy
PN

j=1;j 6= i

1

jri�rj j
(self-energy

term omitted) is computed at the locations ri of each of the charges. The potential at other points is estimated using a linear

�nite element triangular function. The color scale is shown at the right with blue being lower potential and red being higher

potential. To obtain lattice con�gurations we begin by placing points on the faces of an icosahedron. Essentially, we want to

place (N �12)=20 points on each of the 20 faces of the icosahedron, taking care not to double count points on the edge between

two faces. The other 12 points are the vertices of the icosahedron. For example, if one joins any three of the vertices of the

pentamers in (a) there are (132�12)=20 = 6 points contained within each resulting equilateral triangle. Speci�cally, we identify

one face of an icosahedron with an equilateral triangle in the complex plane having vertices at (0; (m+ n�); (m� + n�2)) with

� = exp(�i=3). Points are placed on this �rst triangle by including all points from the lattice k + l� (k; l integers) which are

contained in or on the boundary of the triangle. Points on the other faces of the icosahedron can be obtained by 180 degree

rotation about the midpoint of the edge common to two triangles. We project the points from the icosahedron radially out to

a circumscribed unit sphere. We then use a conjugate gradient minimization [18] using E =
P

N

i;j=1;j>i
1=jri � rj j to obtain the

�nal location of the charges.
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(a)
(a)

No. Charges =  912          E = 400660.132
4.400e+02

4.392e+02

(b)
(b)

No. Charges =  912          E = 400662.383
4.400e+02

4.392e+02

FIG. 2. Lattice con�gurations for N = 912 (a) m = 6, n = 5, (b) m = 9, n = 1. The con�guration in (a) has a smaller ratio

of m to n than the con�guration in (b) and also a lower energy. For construction of the lattices see Fig. 1.
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